
2023.06.09
Draft Version 1.0.0

Interoperable Dialog Event
Object Specification
Version 1.0

The Open Voice Network

Architecture Work Group of the Technical Committee

Editor-in-chief: David Attwater

Contributors: Emmett Coin

Deborah Dahl

Jim Larson

June 9, 2023

TABLE OF CONTENTS

CHAPTER 0. SCOPE AND INTRODUCTION 3

0.1 Document Scope 3

0.2 Dialog Events 3

0.3 A Foundation for Further Specialization 3

CHAPTER 1. SPECIFICATION 4

1.1 Representation 4

1.2 Dialog Event Object 4

1.3 Span 5

1.4 Feature Objects 6

1.5 Confidence, Linking and Stand-off Annotation 9

1.6 JSON Path and the substring() extension 11

1.7 Alternates 12

1.8 Nomenclature 13

CHAPTER 2. SCHEMA 14

CHAPTER 3. REFERENCES 17

CHAPTER 4. GLOSSARY OF TERMS 18

CHAPTER 5. DECISION LOG 19

2

Chapter 0. Scope and Introduction

0.1 Document Scope

This document specifies the format for Open Voice Network (OVON) interoperable dialog

events. The requirements for this specification are given in Interoperable Dialog Packet

Requirements [10]. This specification is generic. As described in the requirements there are

many different potential uses of a dialog event.

0.2 Dialog Events

Interoperable conversational systems will need to be able to process linguistic input and

generate linguistic output. The components within such systems also need to send and receive

such output in a standardized way.

The purpose of a dialog event is to define a generic standardized data structure that can be

used in any component of a dialog system to express a ‘language event’, that is to say, any

features associated with a phrase, utterance or part of an utterance. Dialog events span a

certain time period and are associated with a single speaker.

These events are used to represent user inputs and system outputs of various types, primarily

linguistic inputs and outputs such as speech or text, but also potential multimodal inputs and

outputs, such as selections on a touchscreen or images presented by a system. Dialog events

can be used to express whole utterances, phrases, or other slices of time.

Components of dialog systems may receive an event and add features to it, for example, a

natural language interpretation component may receive an event containing a text feature and

add a semantic feature to it as an interpretation of the text.

It is anticipated that in the future, events could be joined together to form streams, for

example, to represent continuous input or output of a speech-to-text engine.

0.3 A Foundation for Further Specialization

This specification defines a generic format into which dialog features in different formats can be

gathered together into a single event. It also describes how such features can reference each

other.

3

https://openvoicenetwork.org/docs/2832-2/
https://openvoicenetwork.org/docs/2832-2/

It does not define which formats (mime types) should be present, how features should be

named, or which features might be required under what circumstances. This will be left to

additional specifications, which we term derived specifications, built upon this one.

For example, dialog events could be used to carry prompt and response information for a dialog

system, annotate spoken dialog between two human speakers, or be used as part of an

interface to a natural language component in a text processing solution.

We are anticipating that a future OVON standard for representing utterances in a dialog system

or dialog history will be developed as one example of a derived specification.

Chapter 1. Specification

1.1 Representation

Dialog event objects will be represented as a JSON [1] object in a string format. The JSON dialog

event object is not intended to be a stand-alone document. It is intended to be included in a

larger data structure as an object with a re-usable standard structure

1.2 Dialog Event Object

Each dialog event object has a unique ID, is associated with a single speaker (person or

machine), spans a period of time, and contains features representing different inter-related

aspects of the event.

{

"id": "user-utterance-30",

"speaker-id": "b5y09lky5KU5",

"previous-id": "user-utterance-28",

"span": {

"start-time": "2022-12-20 15:59:01.246500+00:00",

"end-offset": "PT0.1045"

},

"features": {

"my-audio-feature": { … }

"my-text-feature": { … }

4

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

"my-semantic-feature": { … }

"my-custom-feature": { … }

}

}

Figure 1. Example of a dialog event container.

Figure 1 shows an example of a dialog event object. Each dialog event object has a unique id

and relates to just one speaker identified by the speaker-id. The event can optionally be linked

to a previous event object from the same speaker using the previous-id. The span object

represents the time-span of the event.

The features: id, speaker-id, span, and features are mandatory. The previous-id object is

optional. The features section will typically contain one or many feature objects but may be

empty. Each feature object is identified with a key which can have any arbitrary feature name.

As dictionary keys, feature names must be unique within a dialog event.

1.3 Span

The span object describes a period of time during which the event occurred. It is this span that

distinguishes the dialog event from a visual user-interface event which occurs at a point in time.

Span objects must contain either an absolute start-time or a relative start-offset but not both.

They can also optionally contain either an end-time or end-offset but not both. Absolute times

are represented in ISO 8601 [2] format, more specifically the simpler interoperable variant

specified in IETF RFC 3339 [3]. Relative durations are represented in ISO 8601 [2] duration

format.

The top-level span object may contain a start-offset rather than an absolute start-time. This

start-offset specifies the start time as the time elapsed since an absolute reference time is

defined outside of the object. For example, the event might be contained in a dialog history

object and this offset might be relative to the start-time of the conversation represented by that

object.

As will be explained below, span objects can also be included in individual tokens within

features of the dialog event.

5

https://www.iso.org/iso-8601-date-and-time-format.html
https://datatracker.ietf.org/doc/html/rfc3339
https://www.iso.org/iso-8601-date-and-time-format.html

1.4 Feature Objects

{

"id": "user-utterance-30",

"speaker-id": "b5y09lky5KU5",

"previous-id": "user-utterance-28",

"span": {

"start-time": "2022-12-20 15:59:01.246500+00:00",

"end-offset": "PT3.1045"

},

“features”: {

"my-audio-feature": {

"mime-type": "audio/wav",

"tokens": [

{

"value-url": "http://localhost/xyz1234.wav"

}

]

},

"my-text-token-feature": {

"mime-type": "text/plain",

"lang": "en",

"encoding": "UTF-8",

"token-schema": "BertTokenizer.from_pretrained(bert-base-uncased)"

"tokens": [
{"value": "what"},

{"value": "is"},

{"value": "the"},

{"value": "weather"},

{"value": "forecast"},

{"value": "for"},

{"value": "tomorrow"}

]

}

}

6

}

Figure 2. A dialog event containing an audio feature object and a tokenized text feature object.

As a minimum, each feature object must contain a mime-type and an array of token objects

named tokens.

Figure 2 shows a simple example of a tokenized text feature. In this example, the mime-type is

plain text and the feature is broken into a sequence of tokenized words. Each word is

represented by a token object.

This is just one example of how text can be represented in a feature.

The tokens array contains zero or more token objects, and each token object must contain

either a value object or a value-url string.

The value-url string references an external document that contains the value. The reference is a

string in the format of a Universal Resource Locator (URL) as shown in the my-audio-feature in

Figure 2.

The mime-type is mandatory and defines the format of the value object or the document

referenced by the value-url. The format of mime-type is defined in IETF RFC-2231 [6]

The object lang defines the language of the feature according to IETF BCP 47 language Tag [4].

This value is optional and remains undefined if not included. This value informs how the feature

should be interpreted. If the feature contains multilingual content it is recommended that this

value remains undefined or is set to the dominant language of the feature.

The encoding object defines the text encoding within the value objects. Values should be one

of "ISO-8859-1" (See ISO/IEC 8859-1 [11]) or "UTF-8" (See RFC3629 [12]). This value is optional

and remains undefined if not included.

The token-schema object is included to allow reference to standard sets of token values or

symbols for certain features with specific mime-types. For example, it could be used to specify

which phonetic pronunciation alphabet is present in a pronunciation feature, or refer to a

specific standard set of intents for a given domain in a semantic feature. The format of this

object is not mandated and is expected to be defined in derived specifications. This value is

optional and remains undefined if not included. Figure 2 shows one example of how the

token-schema might be used to reference a specific text tokenizer. Figure 4 shows an example of

7

https://datatracker.ietf.org/doc/html/rfc2231
https://www.rfc-editor.org/rfc/rfc5646.txt
https://www.iso.org/standard/28245.html
https://datatracker.ietf.org/doc/html/rfc3629

how token-schema might be used to reference a standard semantic schema. Both examples are

illustrative, not normative.

..

"my-text-token-feature": {

"mime-type": "text/plain",
"tokens": [

{

"value": "what",

"span": {

"start-offset": "PT0.0210",

"end-offset": "PT0.1457"

}

},

{

"value": "is",

"span": {

"start-offset": "PT0.1460",

"end-offset": "PT0.1976"

}

},

..

{

"value": "tomorrow",

"span": {

"start-offset": "PT2.3082",

"end-offset": "PT3.0784"

}

},

]

}

..

Figure 3. A feature object containing tokens objects with spans.

Each token object can also optionally contain a span object. This indicates the time span of this

particular token. As described in section 1.3 Span, spans can be defined as absolute times or

relative offsets. In a token object start-offset and end-offset are relative to the start-time of the

parent dialog event (or the implied dialog event start time defined by its start-offset).

8

Figure 3 shows an example where the tokenized words of the text feature for Figure 2 are each

given an individual span.

1.5 Confidence, Linking, and Stand-Off Annotation

Each feature should represent just one aspect of the dialog event. Each token object within

each feature can be linked to another token object in the event using the object links.

{

"id": "user-utterance-30",

"speaker-id": "b5y09lky5KU5",

"previous-id": "user-utterance-28",

"span": {

"start-time": "2022-12-20 15:59:01.246500+00:00",

"end-offset": "PT0.1045"

},

"features": {

"my-text-feature": {

"mime-type": "text/plain",

"lang": "en",

"encoding": "UTF-8",

"tokens": [

{

"value": "what is the weather forecast for tomorrow",

"confidence": 0.99

}

]

},

"my-semantic-feature": {

"mime-type": "text/x.my-semantic-mime-type",

"token-schema": "standard-intents.org/schemas/weather.xml",

"tokens": [

{

"value": {

9

"name": "intent",

"label": "WeatherForecast"

},

"links": ["$.my-text-feature.tokens[0].value"],

"confidence": 1.0

},

{

"value": {

"name": "date",

"label": "02-14-2023"

},

"links": [

"$.my-text-feature.tokens[0].value.substring(34,41)"],

"confidence": 0.87

}

]

}

}

}

Figure 4. A simple example of linking between features with confidence assigned to a feature.

Figure 4 shows an example of a semantic feature which links to the text that it represents.

The optional links object is an array of references to the value (or parts of the value) of other

token objects using a JSON Path with some extensions. There is no restriction on how many

links a feature can have.

Unlike the text in Figure 2, in this example, the text is not tokenized. The semantic token with

the name "intent" is linked to the whole text of the utterance as defined by the JSON path

$.my-text-feature.tokens[0].value. The semantic token with the name "date" however is linked

to a sub-string of the source text - the word ‘tomorrow’ - via the JSON Path

$.my-text-feature.tokens[0].value.substring(34,41). Section 1.6 describes how to use JSON Path

references in more detail.

The optional confidence object is a number carrying a measure of the confidence that the

information contained in the associated value is ‘correct’. Confidence values are expressed as a

10

probability (real number between 0.0 and 1.0). Derivative specifications may override this

range for specialized situations.

Recall that the format of a given value object is defined by the mime-type and will vary between

features.

Feature layering and cross-referencing are both important parts of the dialog event standard.

Together they permit the different features of an utterance or linguistic event to be kept

separate but also linked logically and temporally with each other. This approach is termed

stand-off-annotation. [9]

1.6 JSON Path and the substring() extension

Individual elements of the linked object are defined as strings containing JSON Paths. JSON Path

is a notation for querying and manipulating data stored in JavaScript Object Notation (JSON).

At the time of publication, there is not an agreed standard definition for JSON Path. There are a

number of implementations based on JSON Path [7] that are broadly compatible. There is also

an IETF task force RFC6901 [8] working on a common standard.

JSON Path expressions in links objects are cross-references from one token object to the value,

or part of a value, of another token object. For these references, the root document

(designated by ‘$’) is the features object in the current dialog event. There is currently no way

to specify a link between features that are not contained in the same dialog event.

Implementations should support one additional non-standard extension to JSON Path - namely

the substring() function. This extension is added to allow token objects to reference a specific

substring within another token object, for example, a word, phrase, or arbitrary sequence of

characters.

The substring function can be invoked at the tail end of a path. The input to this function is the

output of the preceding path expression. The substring function takes two ordered

comma-separated parameters, the index of the start and end character in the substring. The

first character of the string is at the index zero.

For example the JSON Path: $.my-text-feature.tokens[0].value.substring(34,41) will return the

34th to the 41st character of string contained within the object referred to by the JSON Path

$.my-text-feature.tokens[0].value. If the referred object is not a string, or the substring is

out-of-bounds then the resulting behavior is undefined.

11

https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/rfc/rfc6901

Token objects can contain content that is specified externally via a value-url string. If this

external content is expressed in JSON format then the JSON path should be interpreted as if the value

had been specified locally. This is functionally equivalent to reading the content of the document

referenced by value-url and placing it in the equivalent local value object before applying the links

reference.

1.7 Alternates

{

"id": "user-utterance-30",

"speaker-id": "b5y09lky5KU5",

"span": {

"start-time": "2022-12-20 15:59:01.246500+00:00"

},

"features": {

"my-text-feature": {

"mime-type": "text/plain",

"tokens": [

{

"value": "what is the weather forecast for tomorrow",

"confidence": 0.96

}

],

"alternates": [

[

{

"value": "what is the weather forecast for thursday",

"confidence": 0.73

}

}

]

}

}

}

12

Figure 5. Defining alternate values for a feature.

Spoken or written language rarely has a single unambiguous interpretation. For this reason, the

dialog event object allows for multiple interpretations of a given event. As has already been

seen, the tokens object is used to represent the preferred interpretation of a given feature. In

addition to this, the optional alternates array can be used to express alternate interpretations of

this feature. For example, in Figure 5 it can be seen that the preferred interpretation of the

feature named my-text-feature has the value “what is the weather forecast for tomorrow” and a

confidence of 0.96. The alternates array contains one additional interpretation of the utterance

with the value “what is the weather forecast for thursday” and a confidence of 0.73.

The alternates object is an array of an array. Each object in the outer array represents an

alternative interpretation and each inner array represents the token objects for this

interpretation. These inner token objects have the same format as array elements in the tokens

object.

The outer array can contain zero or more interpretations. An empty alternates array implies

that there are no alternate interpretations and is equivalent to the alternates object not being

present in the event.

1.8 Nomenclature

This specification uses ‘kebab-case’ (i.e. hyphenated lowercase) for all nominal property names,

for example, start-offset and value-url. User-defined object keys such as the dictionary names

used in the features section can use any valid JSON expression. It is recommended but not

mandated that any normative key names in derived specifications follow the same kebab-case

convention.

13

Chapter 2. Schema

The structure of a JSON dialog event is defined below as a JSON Schema.

{

"$id": "https://openvoicenetwork.org/schema/dialog-event.json",

"$schema": "https://openvoicenetwork.org/schema",

"description": "A representation of a 'language event’ that is to say

any information associated with a phrase, utterance or part of an

utterance.",

"type": "object",

"required": ["id", "speaker-id", "span", "features"],

"properties": {

"id": {

"type": "string"

},

"previous-id": {

"type": "string"

},

"speaker-id": {

"type": "string"

},

"span": { "$ref": "#/$defs/span" },

"features": {

"type": "object",

"patternProperties": {

".*": { "$ref": "#/$defs/features" }

}

}

},

"$defs": {

"features": {

"type": "object",

"required": ["mime-type" , "tokens"],

"properties": {

"encoding": {

"type": "string",

14

"description": "The text encoding of the token values"

},

"mime-type": {

"type": "string",

"description": "The mime-type of the token values"

},

"lang": {

"type": "string",

"description": "The language of the token values"

},

"token-schema": {

"type": "object",

"description": "A schema restricting the token values"

},

"tokens" : {

"type": "array",

"items": {

"$ref": "#/$defs/token"

},

"alternates": {

"type": "array",

"items": {

"type": "array",

"items": {

"type": "object",

"$ref": "#/$defs/token"

}

}

}

}

}

},

"token": {

"type": "object",

"anyOf": [

{ "required": ["value"] },

{ "required": ["value-url"] }

],

15

"properties": {

"value": {

"type": ["number","string","object","array","boolean"]

},

"value-url": {

"$ref": "#/$defs/url"

},

"confidence": {

"type": "number"

},

"span": { "$ref": "#/$defs/span" },

"links" : {

"type": "array",

"items": {

"$ref": "#/$defs/jsonpath"

}

}

}

},

"url": {

"type": "string",

"description": "Any valid URL"

},

"jsonpath": {

"type": "string",

"description": "an expression in JSON Path syntax"

},

"span": {

"anyOf": [

{ "required": ["start-time"] },

{ "required": ["start-offset"] }

],

"properties": {

"start-time": {

"$ref": "#/$defs/iso-time"

},

"end-time": {

"$ref": "#/$defs/iso-time"

16

},

"start-offset": {

"$ref": "#/$defs/iso-duration"

},

"end-offset": {

"$ref": "#/$defs/iso-duration"

}

}

},

"iso-time": {

"description": "A string in ISO 8601 absolute format."

},

"iso-duration": {

"description": "A string in ISO 8601 duration format."

}

}

}

Chapter 3. References

[1] https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
ECMA-404 The JSON data interchange syntax
[2] https://www.iso.org/iso-8601-date-and-time-format.html ISO 8601 Date and Time Format.
[3] https://datatracker.ietf.org/doc/html/rfc3339 Newman, Chris; Klyne, Graham (July 2002).
Date and Time on the Internet: Timestamps. IETF. doi:10.17487/RFC3339. RFC 3339. Archived
[4] https://www.rfc-editor.org/rfc/rfc5646.txt RFC 5646. BCP 47. Tags for Identifying Languages.
[5] https://www.ietf.org/rfc/rfc4646.txt RFC 4646 Regarding Best Practice for Tags for Identifying
Languages
[6] https://datatracker.ietf.org/doc/html/rfc2231 MIME Parameter Value and Encoded Word
Extensions: Character Sets, Languages, and Continuations
[7] https://goessner.net/articles/JsonPath/ JSONPath - XPath for JSON. Stefan Goessner.
[8] https://www.rfc-editor.org/rfc/rfc6901 RFC6901. JavaScript Object Notation (JSON) Pointer
[9] Pose-Rodriguez, Javier & Lopez, Patrice & Romany, Laurence. (2014). A Generic Formalism
for Encoding Standoff annotations in TEI.
[10] https://openvoicenetwork.org/docs/2832-2/ Interoperable Dialog Packet Requirement
Specification.
[11] https://www.iso.org/standard/28245.html ISO/IEC 8859-1:1998 Information technology —
8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1

17

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.iso.org/iso-8601-date-and-time-format.html
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/rfc/rfc5646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://datatracker.ietf.org/doc/html/rfc2231
https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/rfc/rfc6901
https://openvoicenetwork.org/docs/2832-2/
https://www.iso.org/standard/28245.html

[12] https://datatracker.ietf.org/doc/html/rfc3629 RFC3629. UTF-8, a transformation format of
ISO 10646

Chapter 4. Glossary of Terms

Term Definition

dialog event A linguistic event in a spoken or written monologue or dialog

between two or more speakers.

dialog event object A JSON object encoding a dialog event as part of an interface to a

natural language component in a text or speech processing solution

or dialog system.

dialog event feature A layer of information of a certain type associated with the dialog

event.

confidence A number representing a measure of the confidence that the

information contained in the associated value is ‘correct’.

token encoding The specific encoding used to represent text in a token.

token link A link from one token in a feature to part or all of another token in a

feature used to implement stand-off annotation.

JSON path An unambiguous reference to part of a JSON object.

language code A code representing the language (e.g., American English, British

English, New Norsk, etc.)

feature mime type The type of token values in a specific dialog event feature.

dialog event object id The unique identifier of the dialog event object

token span Identifies the span of time for an individual token object

dialog event span Identifies the span of time for the dialog event

18

https://datatracker.ietf.org/doc/html/rfc3629

dialog event speaker id A unique id of the human or machine associated with content of

the dialog event

stand-off-annotation A method of feature layering and cross-referencing that permits the

different features of an utterance or linguistic event to be kept

separate but also linked logically and temporally with each other.

feature token A representation of part of the information that makes up a feature

value.

token object A JSON object representing a feature token which defines the value

of the feature and other associated information such as its span and

how it links to other feature tokens.

derived specification An derivative standard, built upon this specification, which defines a

specific way to use a dialog event in a particular context.

Chapter 5. Decision Log
This section documents some of the key design decisions that were made by the team during

the development of this specification. It is informative, not normative.

Issue Topic Issue and Decision

Nomenclature Issue: What style of object name should we adopt in the
dialog event?

Decision: We adopt ‘kebab-case’ (i.e. hyphenated lower case)
for all property names, for example ‘start-offset’ and
‘value-url’.

links Issue: Should we allow multiple links for a token object?

Decision: Yes so that one feature can reference more than
one other feature.

Span start and end times Issue: Should start times and end times be mandatory or
optional?

Decision: Start times are required. End times should be
optional because events containing text to be generated via

19

text-to-speech cannot know when the generated text will
actually end in real time. For such generative events the
start time will be the time that the utterance is intended to
start. It cannot anticipate actual delays in processing. We
would anticipate that when the text is processed to generate
the audio, the audio will have full span. At this point the end
time and the start time may be modified to represent the
viewpoint of the downstream process that generated it (i.e. the
TTS may add an end time and also change the start time to
the point where an event is re-transmitted).

Start and end offsets Issue: Should start and end times just be absolute or should
we also support relative options such as offsets?

Decision Times can be absolute or relative but not both. The
optionality is not complex and supports common use cases.

Time Zones Issue: Does it matter that ISO can represent different time
zones and will it cause a problem if servers are in different
time zones?

Decision: No. It shouldn’t matter as long at consumers of
messages regularize for their own time zone before using the
time. ISO 8601 carries the time zone information in the
format.

Features Issue: What is the cardinality of features object?

Decision: We expect at least one feature but in the spec we
will allow for zero or more features.

Speaker Roles Issue: Should an event carry speaker roles (e.g. agent,
customer, bot, etc.)?

Decision: No. Because the role of a speaker is defined by the
consumer of the event not the event itself

Representation Issue: Should we be syntax-neutral or mandate a specific
representation? (e.g. YML, JSON and XML)

Decision: We will specify messages as JSON. It is
straightforward to translate it at source and destination into
other formats.

Representation of Alternates Should a feature object contain a simple list of lists of tokens
or should we separate out alternates into a different object?

Decision: We will treat alternates separately to keep the object

20

simple for systems that do not represent uncertainty in their
events.

Feature Cross-Referencing Issue: Should we use simple array indexing or something
more sophisticated such as JSON Path?

Decision: We will use path indexing via JSON Path. Using a
path notation means that we do NOT need to insist that values
are arrays. They can be any kind of object. This will allow us
to reference strings by character indexes OR reference arrays
by array indexes OR reference dictionaries by their dictionary
names.

External Links Issue: How do we refer to features in external events? (This
was originally a requirement in the requirements
specification.)

Decision: We leave this open for now. See comments on
streaming.

Feature Span How do we attach a time span to a feature?

Decision: We allow the span object to be added to token
objects.

OVON Interoperable Event Restrictions

Confidence Issue: Should we leave the range of confidence values open
for derived specifications to decide?

Decision: No. We will mandate a floating point number
between 0..1 and leave it up to derived specifications to
override this.

Streaming Issue: Is a stream represented by multiple events in the same
stream?

Decision: The use of features and events for streaming needs
to be worked through more carefully. It is possible that it will
require each feature to have a separate ID and span to allow
different spans for different features and to allow continuously
evolving interpretations in for example an asynchronous dialog
system.

21

Issue: Does streaming apply to both speech and text?

Decision: Yes

JPath or JSON Path? Should we adopt JPath or JSON Path?

Decision: Neither are true standards. JPath appears to be
IBM specific. We will adopt JSON Path and extend it to
support substring matching. We will also aim to adopt any
emerging IETF standard if it is completed. We welcome
comments on other standard ways to refer to JSON paths

encoding Issue: Is it the best approach to follow IETF HTTP in allowing only
two encoding types "ISO-8859-1" [ISO-8859-1] or "UTF-8"
[RFC3629].

Decision: Yes for now but we welcome comments.

Token array Issue: This representation
"tokens":[

{"token":
{

"value": "what",
"span": {

---etc
}

}
},
{"token":

{
"value": "what",
"span": {

---etc
}

}
}

]
is different than the unnamed array elements. This may be valid
with JSON indexing. But it permits/forces a JSONtoXML
conversion to decide what to "name" the subelements.
Decision: to be discussed

Value of “tokens” Issue: In 1.5 Confidence
The value refers to a complete string:

"tokens": [
{
"value": "what is the weather forecast for tomorrow",
"confidence": 0.99
}

22

https://datatracker.ietf.org/doc/html/rfc5987#ref-ISO-8859-1
https://datatracker.ietf.org/doc/html/rfc3629

]
But in the earlier example they were single word "tokens". Will
developers need to scan the char-strings to know what they are
getting?
Decision: to be discussed

Alternates Issue: . In the "alternates" section
Figure 5 is missing "]" and if you wanted it to represent

multiple alterates then we should have another alternate array
element in the example.

This gets verbose if the "tokens" array is single words as
in figure 2.
Decision: to be discussed

Tokens It looks like according to the Schema the things under "tokens"
and "alternates" must be a "token", but the examples don't reflect
that.
Decision: to be discussed

23

